Driving out at night should be avoided due to wildlife on the roads.

The route in to Skullbone Plains is not frequently travelled. While TSLC staff attempt to ensure the road is clear, it is possible that fallen trees may block vehicular access, especially after high rainfall and winds. Please notify our office if roads are impassable.

Children should be supervised at all times.

Walk within your capabilities - choose a suitable route and stay on formed tracks and trails.

A vehicle with high clearance is recommended, though it does not need to be a four-wheel drive.

There are no open four-wheel drive tracks in the reserve. The Old Lake Ina Trail is being rehabilitated and is not accessible to vehicles.

If you notice anything out of the ordinary while visiting Skullbone Plains, please contact the TSLC on (03) 6225 1399. You will be provided with a key that opens various gates to the reserve.

To visit Skullbone Plains and to book the tent platforms, please contact the TSLC office on (03) 6225 1399. You will be provided with a key that opens various gates to the reserve.

Wood is provided. Do not collect wood from within the camping area for campers to use for drinking and cooking purposes.

If you are planning a camping area for campers to use for drinking and cooking purposes.

Fire, water and food largely influence vegetation on the reserve. Where frost inhibits the survival of most trees, other vegetation communities such as grasslands, marine and freshwater habitats thrive. Where drainage is poor, aquatic systems arc and curve through herb fields, filling moorlands, and heathlands thrive. Where drainage is poor, aquatic systems arc and curve through herb fields, filling moorlands, and heathlands thrive.

Scribbly knobs of forested terrain frame long runways of sub-alpine moor and fen sloping gently upwards from northeast to southwest and potted with shallow, unpretentious tarns buffered by cushion plants and sphagnum peatlands. Part of The Five Rivers Reserve, Skullbone Plains is included in the National Reserve System and is protected by a conservation covenant under the Nature Conservation Act 2002.

Visiting the Reserve

Skullbone Plains is in a remote area of Tasmania that is prone to extreme and wild weather. You need to be well equipped and ready for all conditions. Heavy snowfalls are not uncommon in the Central Highlands and conditions may change quickly. Check the local forecast before you leave and be prepared for four seasons.

You must be self-sufficient, bringing all food provisions. There are no facilities for refilling water bottles or cooking.

To visit Skullbone Plains and to book the tent platforms, please contact the TSLC office on (03) 6225 1399. You will also be provided with a key that opens various gates to the reserve.
Skullbone Plains carpark. Expect the drive to take no
From Bronte Park it is approximately 32 km to the main
where the road swings to the right to a parking area.

1 km you will reach a ‘T’ intersection. Take a sharp left. In
km to a boomgate (CH2-1) then after a further 1.4 km,
To access the main entrance to the reserve, continue 1.5
Plains Walking Track on the left, and parking on the right.

After a further 3.5 km, veer right at another bend. In 4
left and travel straight ahead through another gate and
Grid. Continue another 5 km along Pine Tier Rd. Keep
Pine Tier Lagoon, travelling over the Pine Tier Gate and
Marlborough Highway and veer left onto Pine Tier Road.

From the Bronte Park Shop travel 1.5 km north along the
which is approximately 13.6 km northeast of Derwent
Bridge, 188 km north of Hobart or 188 km south of
Launceston. See the map provided for the approach to

THE MAIN APPROACH TO SKULLBONE PLAINS IS VIA BRONTE PARK, WHICH IS APPROXIMATELY 13.6 KM NORTH OF DARTMOUTH BRIDGE, 188 KM NORTH OF HOBART OR 188 KM SOUTH OF LAUNCESTON. SEE THE MAP PROVIDED FOR THE APPROACH TO THE RESERVE.

FROM THE BRONTE PARK SHOP TRAVEL 1.5 KM NORTH ALONG THE MARLBOROUGH HIGHWAY AND WEAVE EAST ONTO PINE TIER ROAD. APPROXIMATELY 3 KM KEEP RIGHT AT THE BUMPY SPOKES TRACK, THEN FURTHER 5 KM TO A 'T' INTERSECTION, TAKE A SHARP LEFT. IN A FURTHER 1.4 KM YOU WILL REACH A BOOMGATE (CH2-1). IN TOTAL OVER 30 KM YOU WILL REACH A 'T' INTERSECTION. TAKE A STRAIGHT ON AT THIS INTERSECTION. IN A FURTHER 3.5 KM, YOU WILL REACH A LANDING. TURN LEFT, THROUGH THE LAST BOOMGATE (CH2-4) AND CONTINUE A SHORT DISTANCE WHERE THE ROAD SWINGS TO THE RIGHT TO A PARKING AREA. FROM BRONTE PARK IT IS APPROXIMATELY 30 KM TO THE MAIN SKULLBONE PLAINS CARPARK. EXPLORE THIS TRAIL TO TAKE AT LEAST ONE HOUR. LOOK FOR THESE MARKER SYMBOLS AT INTERSECTIONS ALONG THE WAY.

THINGS TO SEE AND DO

Skullbone plains

Erected nose-to-nose, alpine skullbones peatland is in
season throughout its duration. Occurs in pockets across
Skullbone Plains, skullbone peatland occurs where fire
has been either absent, or present but with low frequency
and intensity. With neighbouring areas spanning Clarence
Lake to Ina, Skullbone Plains comprises one of the
most significant expanses of skullbones in Tasmania, using
unique ‘standing wave’ structures known nowhere else in the world. As rising temperatures
and climate change put pressure on water availability, the importance of skullbone peatland to regulate water
movement and downstream flow also surges.

Mena cider gums

Regarded as the most cold tolerant of all eucalypts, the
endemic and nationally endangered Mena cider gums
(Eucalyptus gunnii) reach Çu villages. Clustered clusters in the frost
rooted of Skullbone Plains. Restricted to Tasmania’s
Central Plateau, it is believed that during late spring and
summer, Tasmanian Aborigines collected the sugary
patches along its back and sides. After spawning in spring,
the Clarence galaxias is created by the seams of ancient
glaciation which peaked between 18,000 and 22,000
years due to an amalgam of pressures including drought,
and climate change put pressure on water availability,
and climate change put pressure on water availability,